Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Solution
\[\text { Let, u } = \tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\]
\[\text { Put x }= \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - 1}{\tan\theta + 1} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - \tan\frac{\pi}{4}}{1 + \tan\theta \tan\frac{\pi}{4}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \theta - \frac{\pi}{4} \right) \right] . . . \left( i \right) \]
\[\text { Here }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \tan\theta < \frac{1}{2}\]
\[ \Rightarrow - \tan^{- 1} \left( \frac{1}{2} \right) < \theta < \tan^{- 1} \left( \frac{1}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[u = \theta - \frac{\pi}{4} .......\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = \tan^{- 1} x - \frac{\pi}{4} .........\left[ \text { Since, x } = \tan\theta \right]\]
differentiating it with respect to x,
\[\frac{du}{dx} = \frac{1}{1 + x^2} - 0 \]
\[ \Rightarrow \frac{du}{dx} = \frac{1}{1 + x^2} . . . \left( ii \right) \]
\[\text{ And }, \]
\[\text { Let, v } = \sin^{- 1} \left( 3x - 4 x^3 \right)\]
\[\text { Put x } = \sin\theta\]
\[ \Rightarrow v = \sin^{- 1} \left( 3\sin\theta - 4 \sin^3 \theta \right)\]
\[ \Rightarrow v = \sin^{- 1} \left( \sin3\theta \right) . . . \left( iii \right)\]
\[\text { Now }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \sin\theta < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{6} < \theta < \frac{\pi}{6}\]
\[\text { So, from equation } \left( iii \right), \]
\[v = 3\theta .........\left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow v = 3 \sin^{- 1} x .......\left[ \text { Since,} x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{3}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{3}\]
\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{3\left( 1 + x^2 \right)}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate logx 3 ?
Differentiate (log sin x)2 ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`