English

Differentiate Tan − 1 ( X − 1 X + 1 ) with Respect - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?

Sum

Solution

\[\text { Let, u } = \tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\]

\[\text { Put x }= \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - 1}{\tan\theta + 1} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - \tan\frac{\pi}{4}}{1 + \tan\theta \tan\frac{\pi}{4}} \right) \]

\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \theta - \frac{\pi}{4} \right) \right] . . . \left( i \right) \]

\[\text { Here }, - \frac{1}{2} < x < \frac{1}{2}\]

\[ \Rightarrow - \frac{1}{2} < \tan\theta < \frac{1}{2}\]

\[ \Rightarrow - \tan^{- 1} \left( \frac{1}{2} \right) < \theta < \tan^{- 1} \left( \frac{1}{2} \right)\]

\[\text { So, from equation } \left( i \right), \]

\[u = \theta - \frac{\pi}{4} .......\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow u = \tan^{- 1} x - \frac{\pi}{4} .........\left[ \text { Since, x } = \tan\theta \right]\]

differentiating it with respect to x,

\[\frac{du}{dx} = \frac{1}{1 + x^2} - 0 \]

\[ \Rightarrow \frac{du}{dx} = \frac{1}{1 + x^2} . . . \left( ii \right) \]

\[\text{ And }, \]

\[\text { Let, v } = \sin^{- 1} \left( 3x - 4 x^3 \right)\]

\[\text { Put x } = \sin\theta\]

\[ \Rightarrow v = \sin^{- 1} \left( 3\sin\theta - 4 \sin^3 \theta \right)\]

\[ \Rightarrow v = \sin^{- 1} \left( \sin3\theta \right) . . . \left( iii \right)\]

\[\text { Now }, - \frac{1}{2} < x < \frac{1}{2}\]

\[ \Rightarrow - \frac{1}{2} < \sin\theta < \frac{1}{2}\]

\[ \Rightarrow - \frac{1}{6} < \theta < \frac{\pi}{6}\]

\[\text { So, from equation } \left( iii \right), \]

\[v = 3\theta .........\left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow v = 3 \sin^{- 1} x .......\left[ \text { Since,} x = \sin\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{3}{\sqrt{1 - x^2}} . . . \left( iv \right)\]

\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{3}\]

\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{3\left( 1 + x^2 \right)}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 113]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 13 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate logx 3 ?


Differentiate (log sin x)?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×