Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
उत्तर
\[\text { Let, u } = \tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\]
\[\text { Put x }= \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - 1}{\tan\theta + 1} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - \tan\frac{\pi}{4}}{1 + \tan\theta \tan\frac{\pi}{4}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \theta - \frac{\pi}{4} \right) \right] . . . \left( i \right) \]
\[\text { Here }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \tan\theta < \frac{1}{2}\]
\[ \Rightarrow - \tan^{- 1} \left( \frac{1}{2} \right) < \theta < \tan^{- 1} \left( \frac{1}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[u = \theta - \frac{\pi}{4} .......\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = \tan^{- 1} x - \frac{\pi}{4} .........\left[ \text { Since, x } = \tan\theta \right]\]
differentiating it with respect to x,
\[\frac{du}{dx} = \frac{1}{1 + x^2} - 0 \]
\[ \Rightarrow \frac{du}{dx} = \frac{1}{1 + x^2} . . . \left( ii \right) \]
\[\text{ And }, \]
\[\text { Let, v } = \sin^{- 1} \left( 3x - 4 x^3 \right)\]
\[\text { Put x } = \sin\theta\]
\[ \Rightarrow v = \sin^{- 1} \left( 3\sin\theta - 4 \sin^3 \theta \right)\]
\[ \Rightarrow v = \sin^{- 1} \left( \sin3\theta \right) . . . \left( iii \right)\]
\[\text { Now }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \sin\theta < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{6} < \theta < \frac{\pi}{6}\]
\[\text { So, from equation } \left( iii \right), \]
\[v = 3\theta .........\left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow v = 3 \sin^{- 1} x .......\left[ \text { Since,} x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{3}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{3}\]
\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{3\left( 1 + x^2 \right)}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cosec x ?
Differentiate etan x ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = a + bx2, a, b arbitrary constants, then
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]