Advertisements
Advertisements
प्रश्न
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
उत्तर
\[\text { We have}, \]
\[x = \cos t + \log \tan\frac{t}{2} \text { and y } = \sin t \]
\[\text { On differentiating with respect to t, we get }\]
\[\frac{d x}{d t} = \frac{d}{d t}\left( \cos t + \log \tan\frac{t}{2} \right) = - \sin t + \frac{1}{\tan\frac{t}{2}} \times \sec^2 \frac{t}{2} \times \frac{1}{2}\]
\[ = - \sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}} = - \sin t + \frac{1}{\sin t}\]
\[ = \frac{- \sin^2 t + 1}{\sin t} = \frac{- \sin^2 t + 1}{\sin t}\]
\[ = \frac{\cos^2 t}{\sin t}\]
\[\text { and }\]
\[\frac{d y}{d t} = \frac{d}{d t}\left( \sin t \right) = \cos t\]
\[\text { Now}, \frac{d^2 y}{d t^2} = \frac{d}{d t}\left( \frac{d y}{d t} \right) = \frac{d}{d t}\left( \cos t \right) = - \sin t\]
\[ \left( \frac{d^2 y}{d t^2} \right)_{t = \frac{\pi}{4}} = - \sin\left( \frac{\pi}{4} \right) = - \frac{1}{\sqrt{2}} . . . (1)\]
\[\text { Also }, \left( \frac{d y}{d x} \right) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t}{\frac{\cos^2 t}{\sin t}} = \frac{\sin t}{\cos t} = \tan t\]
\[\text { Now,} \frac{d^2 y}{d x^2} = \frac{d}{d x}\left( \frac{d y}{d x} \right) = \frac{d}{d x}\left( \tan t \right)\]
\[ = \frac{d}{d t}\left( \tan t \right) \times \frac{dt}{dx} = \sec^2 t \times \frac{\sin t}{\cos^2 t}\]
\[ = \frac{\sin t}{\cos^4 t}\]
\[ \left( \frac{d^2 y}{d x^2} \right)_{t = \frac{\pi}{4}} = \frac{\sin\left( \frac{\pi}{4} \right)}{\cos^4 \left( \frac{\pi}{4} \right)} = 2\sqrt{2} . . . (2)\]
\[\text { Hence, at } t = \frac{\pi}{4}, \frac{d^2 y}{d t^2} = - \frac{1}{\sqrt{2}} \text { and } \frac{d^2 y}{d x^2} = 2\sqrt{2} .\]
APPEARS IN
संबंधित प्रश्न
Differentiate etan x ?
Differentiate logx 3 ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .