Advertisements
Advertisements
प्रश्न
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
उत्तर
\[\text { We have }, \]
\[x = a \sin t \text { and y }= a\left( \cos t + \log \tan\frac{t}{2} \right)\]
\[\text { On differentiating with respect to t, we get }\]
\[\frac{d x}{d t} = \frac{d}{d t}\left( a \sin t \right) = a \cos t\]
\[\text { and }\]
\[\frac{d y}{d t} = \frac{d}{d t}\left[ a\left( \cos t + \log \tan\frac{t}{2} \right) \right] = a\left( - \sin t + \frac{1}{\tan\frac{t}{2}} \times \sec^2 \frac{t}{2} \times \frac{1}{2} \right)\]
\[ = a\left( - \sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}} \right) = a\left( - \sin t + \frac{1}{\sin t} \right)\]
\[ = a\left( \frac{- \sin^2 t + 1}{\sin t} \right) = a\left( \frac{\cos^2 t}{\sin t} \right)\]
\[\text { Now, }\left( \frac{d y}{d x} \right) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\left( \frac{\cos^2 t}{\sin t} \right)}{a \cos t} = \cot\left( t \right)\]
\[\text { Therefore}, \]
\[\frac{d^2 y}{d x^2} = \frac{d}{d x}\left( \frac{d y}{d x} \right) = \frac{d}{d x}\left( \cot\left( t \right) \right)\]
\[ = \frac{d}{d t}\left( \cot\left( t \right) \right) \times \frac{dt}{dx} = - {cosec}^2 t \times \frac{1}{a \cos t}\]
\[ = - \left( \frac{1}{a \sin^2 t \cos t} \right)\]
\[\text { Hence }, \frac{d^2 y}{d x^2} = - \left( \frac{1}{a \sin^2 t \cos t} \right) .\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate tan (x° + 45°) ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function log (log x) ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
Find the minimum value of (ax + by), where xy = c2.
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]