Advertisements
Advertisements
प्रश्न
Find the second order derivatives of the following function sin (log x) ?
उत्तर
\[y = \sin\left( \log x \right)\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = \cos\left( \log x \right) \times \frac{1}{x}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = - \sin\left( \log x \right)\frac{1}{x} \times \frac{1}{x} + \cos\left( \log x \right) \times \frac{- 1}{x^2}\]
\[ = \frac{- \left[ \sin\left( \log x \right) + \cos\left( \log x \right) \right]}{x^2}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles eax+b.
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Find the minimum value of (ax + by), where xy = c2.