मराठी

If Y = Log { √ X − 1 − √ X + 1 } ,Show that D Y D X = − 1 2 √ X 2 − 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?

उत्तर

\[\text{Here} , y = \log\left( \sqrt{x - 1} - \sqrt{x + 1} \right)\]

Differentiate it with respect to x we get,

\[\frac{d y}{d x} = \frac{d}{dx}\log\left( \sqrt{x - 1} - \sqrt{x + 1} \right)\]

\[ = \frac{1}{\left( \sqrt{x - 1} - \sqrt{x + 1} \right)}\frac{d}{dx}\left( \sqrt{x - 1} - \sqrt{x + 1} \right) \left[ \text{Using chain rule} \right]\]

\[ = \frac{1}{\left( \sqrt{x - 1} - \sqrt{x + 1} \right)}\left[ \frac{d}{dx}\sqrt{x - 1} - \frac{d}{dx}\sqrt{x + 1} \right]\]

\[ = \frac{1}{\left( \sqrt{x - 1} - \sqrt{x + 1} \right)}\left[ \frac{1}{2} \left( x - 1 \right)^\frac{- 1}{2} - \frac{1}{2} \left( x + 1 \right)^\frac{- 1}{2} \right]\]

\[ = \frac{1}{2}\frac{1}{\left( \sqrt{x - 1} - \sqrt{x + 1} \right)}\left( \frac{1}{\sqrt{x - 1}} - \frac{1}{\sqrt{x + 1}} \right)\]

\[ = \frac{1}{2}\frac{1}{\left( \sqrt{x - 1} - \sqrt{x + 1} \right)}\left\{ \frac{- \left( \sqrt{x - 1} - \sqrt{x + 1} \right)}{\left( \sqrt{x - 1} \right)\left( \sqrt{x + 1} \right)} \right\}\]

\[ = \frac{- 1}{2}\left( \frac{1}{\left( \sqrt{x - 1} \right)\left( \sqrt{x + 1} \right)} \right)\]

\[ = \frac{- 1}{2\sqrt{x^2 - 1}}\]

\[So, \frac{d y}{d x} = \frac{- 1}{2\sqrt{x^2 - 1}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.02 | Q 58 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate logx 3 ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[{10}^{ \log \sin x }\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate x2 with respect to x3


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = a + bx2, a, b arbitrary constants, then

 


If y = etan x, then (cos2 x)y2 =


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×