मराठी

If X = a Sin T − B Cos T , Y = a Cos T + B Sin T , Prove that D 2 Y D X 2 = − X 2 + Y 2 Y 3 ? - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?

उत्तर

\[\text { We have }, \]

\[x = a \sin t - b \cos t, y = a \cos t  + b \sin t\]

\[\text { On differentiating with respect to t, we get }\]

\[\frac{d x}{d t} = \frac{d}{d t}\left( a \sin t - b \cos t \right) = a \cos t + b \sin t\]

\[\text { and }\]

\[\frac{d y}{d t} = \frac{d}{d t}\left( a \cos t + b \sin t \right) = - a \sin t + b \cos t\]

\[\text { Now,} \left( \frac{d y}{d x} \right) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- a \sin t + b \cos t}{a \cos t + b \sin t}\]

\[\text { Therefore, } \]

\[\frac{d^2 y}{d x^2} = \frac{d}{d x}\left( \frac{d y}{d x} \right) = \frac{d}{d x}\left( \frac{- a \sin t + b \cos t}{a \cos t + b \sin t} \right)\]

\[ = \frac{d}{d t}\left( \frac{- a \sin t + b \cos t}{a \cos t + b \sin t} \right) \times \frac{dt}{dx}\]

\[ = \frac{\left( a \cos t + b \sin t \right)\frac{d}{dt}\left( - a \sin t + b \cos t \right) - \left( - a \sin t + b \cos t \right)\frac{d}{dt}\left( a \cos t + b \sin t \right)}{\left( a \cos t + b \sin t \right)^2} \times \frac{1}{a \cos t + b \sin t}\]

\[ = \frac{\left( a \cos t + b \sin t \right)\left( - a \cos t - b \sin t \right) - \left( - a \sin t + b \cos t \right)\left( - a \sin t + b \cos t \right)}{\left( a \cos t + b \sin t \right)^3}\]

\[ = \frac{- \left( a \cos t + b \sin t \right)^2 - \left( - a \sin t + b \cos t \right)^2}{\left( a \cos t + b \sin t \right)^3}\]

\[ = \frac{- \left( a \cos t + b \sin t \right)^2 - \left( a \sin t - b \cos t \right)^2}{\left( a \cos t + b \sin t \right)^3}\]

\[ = \frac{- y^2 - x^2}{y^3}\]

\[\text{Hence,} \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.1 | Q 49 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate (log sin x)?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function  log (sin x) ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×