Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
उत्तर
\[\text{ We have }, y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x} \]
\[ \Rightarrow y = e^{\log \left( \tan x \right)^{\cot x }}+ e^{\log \left( \cot x \right)^{\tan x}} \]
\[ \Rightarrow y = e^{\cot\ x\ log\ tan\ x}+e^{\tan x \log\left( \cot x \right)} \]
Differentiating with respect to x using chain rule and product rule,
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cot x \log\tan x} \right) + \frac{d}{dx}\left( e^{\tan x logcotx} \right)\]
\[ = e^{\cot x \log\tan x} \frac{d}{dx}\left( {}^{\cot x \log\tan x} \right) + e^{\tan\ x\ logcot x} \frac{d}{dx}\left( {}^{\tan\ x\ logcot\ x} \right)\]
\[ = e^{\log \left( \tan x \right)^{\cot x}}\left[ \cot x\frac{d}{dx}\left( \log \tan x \right) + \log \tan x\frac{d}{dx}\left( \cot x \right) \right] + e^{\log\left( \cot x \right)\tan x} \left[ \tan x\frac{d}{dx}\left( \log \cot x \right) + logcot x\frac{d}{dx}\left( \tan x \right) \right] \]
\[ = \left( \tan x \right)^{\cot x} \left[ \cot x \times \left( \frac{1}{\tan x} \right)\frac{d}{dx}\left( \tan x \right) + \log \tan x\left( - {cosec}^2 x \right) \right] + \left( \cot x \right)^{\tan x} \left[ \tan x \times \left( \frac{1}{\cot x} \right)\frac{d}{dx}\left( \cot x \right) + \log \cot x\left( \sec^2 x \right) \right]\]
\[ = \left( \tan x \right)^{\cot x} \left[ \left( \frac{{cosec}^2 x}{\sec^2 x} \right)\left( \sec^2 x \right) - {cosec}^2 x \log \tan x \right] + \left( \cot x \right)^{\tan x} \left[ \left( \frac{\sec^2 x}{{cosec}^2 x} \right)\left( - {cosec}^2 x \right) + \sec^2 x \log \cot x \right]\]
\[ = \left( \tan x \right)^{\cot x} \left[ {cosec}^2 x - {cosec}^2 x \log \tan x \right] + \left( cot x \right)^{\tan x} \left[ \sec^2 x \log \cot x - \sec^2 x \right]\]
\[ = \left( \tan x \right)^{\cot x} {cosec}^2 x\left[ 1 - \log \tan x \right] + \left( cot x \right)^{\tan x} \sec^2 x \left[ \log \cot x - 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan 5x° ?
Differentiate `2^(x^3)` ?
Differentiate (log sin x)2 ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
f(x) = xx has a stationary point at ______.