मराठी

Differentiate X 2 ( 1 − X 2 ) Cos 2 X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?

उत्तर

\[\text{Let } y = \frac{x^2 \left( 1 - x^2 \right)^3}{\cos 2x}\] 

\[\Rightarrow \frac{d y}{d x} = \frac{\cos2x\frac{d}{dx}\left\{ x^2 \left( 1 - x^2 \right)^3 \right\} - x^2 \left( 1 - x^2 \right)^3 \frac{d}{dx}\cos2x}{\cos^2 2x} \]

\[ = \frac{\cos2x\left\{ x^2 \frac{d}{dx} \left( 1 - x^2 \right)^3 + \left( 1 - x^2 \right)^3 \frac{d}{dx}\left( x^2 \right) \right\} - x^2 \left( 1 - x^2 \right)^3 \left( - 2\sin2x \right)}{\cos^2 2x}\]

\[ = \frac{\cos2x\left\{ - 6 x^3 \left( 1 - x^2 \right)^2 + \left( 1 - x^2 \right)^3 2x \right\} + 2 x^2 \left( 1 - x^2 \right)^3 \sin2x}{\cos^2 2x}\]

\[ = \frac{2x \left( 1 - x^2 \right)^2}{\cos2x} - \frac{6 x^3 \left( 1 - x^2 \right)^2}{\cos2x} + \frac{2 x^2 \left( 1 - x^2 \right)^3 \sin2x}{\cos^2 2x}\]

\[ = 2x\left( 1 - x^2 \right)\sec2x\left\{ 1 - 4 x^2 + x\left( 1 - x^2 \right)\tan2x \right\}\]

\[So, \frac{d}{dx}\left\{ \frac{x^2 \left( 1 - x^2 \right)^3}{\cos2x} \right\} = 2x\left( 1 - x^2 \right)\sec2x\left\{ 1 - 4 x^2 + x\left( 1 - x^2 \right)\tan2x \right\}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.02 | Q 52 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate sin (3x + 5) ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Differential coefficient of sec(tan−1 x) is ______.


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function x cos x ?


Find the second order derivatives of the following function  log (log x)  ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×