मराठी

If X = Sin T and Y = Sin Pt, Prove that ( 1 − X 2 ) D 2 Y D X 2 − X D Y D X + P 2 Y = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .

उत्तर

Given:
x = sint and y = sinpt
Differentiating both sides with respect to t, we get

\[\frac{d x}{d t} = \cos t and \frac{d y}{d t} = p\cos pt\]

\[ \Rightarrow \frac{d y}{d x} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{p\cos pt}{\cos t}\]

Differentiating both sides with respect to x, we get

\[\frac{d^2 y}{d x^2} = \frac{- p^2 \sin pt \cos t + p\cos pt\sin t}{\cos^2 t} \times \frac{dt}{dx}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{- p^2 \sin pt \cos t + p\cos pt\sin t}{\cos^3 t}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{- p^2 \sin pt \cos t}{\cos^3 t} + \frac{p\cos pt\sin t}{\cos^3 t}\]

\[\Rightarrow \frac{d^2 y}{d x^2} = \frac{- p^2 y}{\cos^2 t} + \frac{x\frac{d y}{d x}}{\cos^2 t}\]

\[ \Rightarrow \cos^2 t\frac{d^2 y}{d x^2} = - p^2 y + x\frac{d y}{d x}\]

\[ \Rightarrow \left( 1 - \sin^2 t \right)\frac{d^2 y}{d x^2} = - p^2 y + x\frac{d y}{d x}\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{d y}{d x} + p^2 y = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate `2^(x^3)` ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Differentiate \[\left( \log x \right)^x\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = etan x, then (cos2 x)y2 =


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×