Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
उत्तर
\[\text { Let, u }= \sin^{- 1} \left( 2x\sqrt{1 - x^2} \right)\]
\[ \text { Put x } = \sin\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta \cos\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { And, } \]
\[\text { Let, v } = se c^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\sqrt{1 - \sin^2 \theta}} \right) \]
\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\cos\theta} \right) \]
\[ \Rightarrow v = se c^{- 1} \left( sec\theta \right) \]
\[ \Rightarrow v = \cos^{- 1} \left( \frac{1}{\frac{1}{\cos\theta}} \right) \left[ \text { Since }, se c^{- 1} x = \cos^{- 1} \left( \frac{1}{x} \right) \right]\]
\[ \Rightarrow v = \cos^{- 1} \left( \cos\theta \right) . . . \left( ii \right)\]
\[\text { Here }, \]
\[ x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \sin\theta \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \theta \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = 2\theta ........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]
\[\text { Let, u }= 2 \sin^{- 1} x .........\left[ \text { Since,} x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 2\left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { And, from equation } \left( ii \right), \]
\[v = \theta \left[ \text{ Since,} \cos^{- 1} \left( \cos\theta \right) = \theta, \text { if } \theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow v = \sin^{- 1} x \left[ \text { Since }, x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text {dividing equation } \left( iii \right) by \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{1}\]
\[ \therefore \frac{du}{dv} = 2\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate sin (log x) ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function e6x cos 3x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?