Advertisements
Advertisements
प्रश्न
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
पर्याय
0
1
1/e
1/2e
उत्तर
1/2 e
\[\text{ We have,} f\left( x \right) = \log_{x^2} \left( \log x \right)\]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{\log x^2} \]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{2 \log x}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \frac{d}{dx}\left\{ \frac{\log\left( \log x \right)}{\log x} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{\log x} \times \frac{1}{x} \times \log x - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{x} - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e} - \frac{\log\left( \log e \right)}{e}}{\left( \log e \right)^2} \right\} \left[ \text{ Putting x } = e \right]\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e}}{1} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2e}\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan2 x ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function log (log x) ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?