मराठी

If Y = X N { a Cos ( Log X ) + B Sin ( Log X ) } , Prove that X 2 D 2 Y D X 2 + ( 1 − 2 N ) X D Y D X + ( 1 + N 2 ) Y = 0 Disclaimer: There is a Misprint in the Question. It Must Be - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?

उत्तर

\[\text { We have,} \]

\[y = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} . . . (1)\]

\[\text { Differentiating y with respect to x, we get }\]

\[\frac{d y}{d x} = n x^{n - 1} \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^n \left\{ - a \sin\left( \log x \right) \times \frac{1}{x} + b \cos\left( \log x \right) \times \frac{1}{x} \right\}\]

\[ = \frac{n}{x} x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\}\]

\[ = \frac{n}{x}y + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} \left[\text {  From }(1) \right]\]

\[ \Rightarrow x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} = \frac{d y}{d x} - \frac{n}{x}y . . . (2)\]

\[\text { Differentiating } \frac{d y}{d x} \text { with respect to x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right) x^{n - 2} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \cos\left( \log x \right) \times \frac{1}{x} - b \sin\left( \log x \right) \times \frac{1}{x} \right\}\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right)\frac{x^{n - 1}}{x}\left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} - \frac{x^n}{x^2}\left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\left( \frac{d y}{d x} - \frac{n}{x}y \right) - \frac{y}{x^2} \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\frac{d y}{d x} - \frac{n\left( n - 1 \right)y}{x^2} - \frac{y}{x^2}\]

\[ = \frac{d y}{d x}\left( \frac{n + n - 1}{x} \right) - \frac{\left( n + n^2 - n + 1 \right)y}{x^2}\]

\[ = \left( \frac{2n - 1}{x} \right)\frac{d y}{d x} - \frac{\left( n^2 + 1 \right)y}{x^2}\]

\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} - x\left( 2n - 1 \right)\frac{d y}{d x} + \left( n^2 + 1 \right)y = 0\]

\[\text { Hence }, x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.1 | Q 52 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles eax+b.


Differentiate log7 (2x − 3) ?


Differentiate `2^(x^3)` ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


Find the second order derivatives of the following function tan−1 x ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×