Advertisements
Advertisements
प्रश्न
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
उत्तर
\[\text { We have,} \]
\[y = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} = n x^{n - 1} \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^n \left\{ - a \sin\left( \log x \right) \times \frac{1}{x} + b \cos\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x} x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\}\]
\[ = \frac{n}{x}y + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} \left[\text { From }(1) \right]\]
\[ \Rightarrow x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} = \frac{d y}{d x} - \frac{n}{x}y . . . (2)\]
\[\text { Differentiating } \frac{d y}{d x} \text { with respect to x, we get }\]
\[\frac{d^2 y}{d x^2} = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right) x^{n - 2} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \cos\left( \log x \right) \times \frac{1}{x} - b \sin\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right)\frac{x^{n - 1}}{x}\left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} - \frac{x^n}{x^2}\left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\left( \frac{d y}{d x} - \frac{n}{x}y \right) - \frac{y}{x^2} \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\frac{d y}{d x} - \frac{n\left( n - 1 \right)y}{x^2} - \frac{y}{x^2}\]
\[ = \frac{d y}{d x}\left( \frac{n + n - 1}{x} \right) - \frac{\left( n + n^2 - n + 1 \right)y}{x^2}\]
\[ = \left( \frac{2n - 1}{x} \right)\frac{d y}{d x} - \frac{\left( n^2 + 1 \right)y}{x^2}\]
\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} - x\left( 2n - 1 \right)\frac{d y}{d x} + \left( n^2 + 1 \right)y = 0\]
\[\text { Hence }, x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 .\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles eax+b.
Differentiate log7 (2x − 3) ?
Differentiate `2^(x^3)` ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
Find the second order derivatives of the following function tan−1 x ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.