Advertisements
Advertisements
प्रश्न
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
उत्तर
\[\text{ Let y} = \left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right) \]
\[\text{ Also, Let u } = \left( x + \frac{1}{x} \right)^x \text{ and v } = x^\left( 1 + \frac{1}{x} \right) \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Then, u } = \left( x + \frac{1}{x} \right)^x \]
\[ \Rightarrow \log u = \log \left( x + \frac{1}{x} \right)^x \]
\[ \Rightarrow \log u = x \log\left( x + \frac{1}{x} \right)\]
Differentiate both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log\left( x + \frac{1}{x} \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( x + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \log\left( x + \frac{1}{x} \right) + x\frac{1}{\left( x + \frac{1}{x} \right)}\frac{d}{dx}\left( x + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( x + \frac{1}{x} \right) + \frac{x}{\left( x + \frac{1}{x} \right)} \times \left( 1 - \frac{1}{x^2} \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \log\left( x + \frac{1}{x} \right) + \frac{\left( x - \frac{1}{x} \right)}{\left( x + \frac{1}{x} \right)} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \log\left( x + \frac{1}{x} \right) + \frac{x^2 - 1}{x^2 + 1} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \frac{x^2 - 1}{x^2 + 1} + \log\left( x + \frac{1}{x} \right) \right]\]
\[\text{ Again }, v = x^\left( 1 + \frac{1}{x} \right) \]
\[ \Rightarrow \log v = \log\left[ x^\left( 1 + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \log v = \left( 1 + \frac{1}{x} \right)\log x\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \log x\frac{d}{dx}\left( 1 + \frac{1}{x} \right) + \left( 1 + \frac{1}{x} \right)\frac{d}{dx}\log x\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left( - \frac{1}{x^2} \right)\log x + \left( 1 + \frac{1}{x} \right)\left( \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = - \frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{- \log x + x + 1}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^\left( 1 + \frac{1}{x} \right) \left( \frac{x + 1 - \log x}{x^2} \right) . . . \left( iii \right)\]
\[\text{ From } \left( i \right), \left( ii \right) \text{and} \left( iii \right),\text{ we obtain }\]
\[\frac{dy}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \frac{x^2 - 1}{x^2 + 1} + \log\left( x + \frac{1}{x} \right) \right] + x^\left( 1 + \frac{1}{x} \right) \left( \frac{x + 1 - log x}{x^2} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate sin (log x) ?
Differentiate (log sin x)2 ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]