Advertisements
Advertisements
प्रश्न
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
उत्तर
\[\text{ Let y} = \left( x \cos x \right)^x + \left( x \sin x \right)^\frac{1}{x} \]
\[ \text{ Also, Let u } = \left( x \cos x \right)^x \text{ and v } = \left( x \sin x \right)^\frac{1}{x} \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = \log \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = x \log\left( x \cos x \right)\]
\[ \Rightarrow \log u = x\left[ \log x + \log \cos x \right]\]
\[ \Rightarrow \log u = x\log x + x\log \cos x\]
Differentiate both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}\left( x \log x \right) + \frac{d}{dx}\left( x \log \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \left\{ \log x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log x \right) \right\} + \left\{ \log \cos x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x\left( 1 \right) + x\left( \frac{1}{x} \right) \right) + \left\{ \log \cos x\left( 1 \right) + x\frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x + 1 \right) + \left\{ \log \cos x + \frac{x}{\cos x}\left( - \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( 1 + \log x \right) + \left( \log \cos x - x \tan x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \left( \log x + \log \cos x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] . . . \left( ii \right)\]
\[\text{ Again, v} = \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \log \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \frac{1}{x}\log\left( x \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\left( \log x + \log \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\log x + \frac{1}{x}\log \sin x\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left( \frac{1}{x}\log x \right) + \frac{d}{dx}\left[ \frac{1}{x}\log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left( \log x \right) \right] + \left[ \log\left( \sin x \right)\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left\{ \log\left( \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\left( - \frac{1}{x^2} \right) + \left( \frac{1}{x} \right)\left( \frac{1}{x} \right) \right] + \left[ \log\left( \sin x \right)\left( - \frac{1}{x^2} \right) + \frac{1}{x}\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}\left( 1 - \log x \right) + \left[ - \frac{\log\left( \sin x \right)}{x^2} + \frac{1}{x \sin x}\left( \cos x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x}{x^2} + \frac{- \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x - \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log\left( x\sin x \right) + x \cot x}{x^2} \right] . . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and } \left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] + \left( x \sin x \right)^\frac{1}{x} \left[ \frac{x \cot x + 1 - \log\left( x \sin x \right)}{x^2} \right]\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles log cos x ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
Find the second order derivatives of the following function sin (log x) ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .