मराठी

Find D Y D X , When X = 1 − T 2 1 + T 2 and Y = 2 T 1 + T 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 

उत्तर

\[\text{ We have, y } = \frac{2t}{1 + t^2}\]
\[\Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 2t \right) - 2t\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] \left[ \text{ using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 2 \right) - 2t\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 + 2 t^2 - 4 t^2}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 - 2 t^2}{\left( 1 + t^2 \right)^2} \right] . . . \left( i \right)\]
\[\text{ and,} \]
\[x = \frac{1 - t^2}{1 + t^2}\]
\[\Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 1 - t^2 \right) - \left( 1 - t^2 \right)\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( - 2t \right) - \left( 1 - t^2 \right)\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{- 4t}{\left( 1 + t^2 \right)^2} \right] . . . \left( ii \right)\]
\[\text{ Dividing equation} \left( i \right) \text{ by } \left( ii \right), \text{ we get }, \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - t^2 \right)}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{t^2 - 1}{2t}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.07 | Q 13 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate sin (3x + 5) ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Write the derivative of sinx with respect to cos x ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×