Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
उत्तर
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 2 \right) - 2t\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 + 2 t^2 - 4 t^2}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 - 2 t^2}{\left( 1 + t^2 \right)^2} \right] . . . \left( i \right)\]
\[\text{ and,} \]
\[x = \frac{1 - t^2}{1 + t^2}\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( - 2t \right) - \left( 1 - t^2 \right)\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{- 4t}{\left( 1 + t^2 \right)^2} \right] . . . \left( ii \right)\]
\[\text{ Dividing equation} \left( i \right) \text{ by } \left( ii \right), \text{ we get }, \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - t^2 \right)}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{t^2 - 1}{2t}\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (3x + 5) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]