Advertisements
Advertisements
प्रश्न
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
उत्तर
\[\Rightarrow \frac{dx}{d\theta} = 2\left( - \sin\theta \right) - \left( - \sin2\theta \right)\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = - 2\sin\theta + 2 \sin2\theta\]
\[ \Rightarrow \frac{dx}{d\theta} = 2\left( \sin2\theta - \sin\theta \right) . . . \left( i \right)\]
\[\text{ and }, \]
\[y = 2 \sin\theta - \sin2\theta\]
\[\Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\left( 2 \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - 2 \cos2\theta\]
\[ \Rightarrow \frac{dy}{d\theta} = 2\left( \cos\theta - \cos2\theta \right) . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by equation } \left( i \right), \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\left( \cos\theta - \cos2\theta \right)}{2\left( \sin2\theta - \sin\theta \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos\theta - \cos2\theta}{\sin2\theta - \sin\theta}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2\sin\left( \frac{\theta + 2\theta}{2} \right)\sin\left( \frac{\theta - 2\theta}{2} \right)}{2\cos\left( \frac{2\theta + \theta}{2} \right)\sin\left( \frac{2\theta - \theta}{2} \right)} ............[\because \sin A - \sin B = 2 \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)\text{ and } \cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\sin\left( \frac{- \theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\left( - \sin\frac{\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\left( \frac{3\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \tan\left( \frac{3\theta}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles x2ex ?
Differentiate etan x ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function ex sin 5x ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .