Advertisements
Advertisements
Question
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Solution
\[\Rightarrow \frac{dx}{d\theta} = 2\left( - \sin\theta \right) - \left( - \sin2\theta \right)\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = - 2\sin\theta + 2 \sin2\theta\]
\[ \Rightarrow \frac{dx}{d\theta} = 2\left( \sin2\theta - \sin\theta \right) . . . \left( i \right)\]
\[\text{ and }, \]
\[y = 2 \sin\theta - \sin2\theta\]
\[\Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\left( 2 \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - 2 \cos2\theta\]
\[ \Rightarrow \frac{dy}{d\theta} = 2\left( \cos\theta - \cos2\theta \right) . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by equation } \left( i \right), \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\left( \cos\theta - \cos2\theta \right)}{2\left( \sin2\theta - \sin\theta \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos\theta - \cos2\theta}{\sin2\theta - \sin\theta}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2\sin\left( \frac{\theta + 2\theta}{2} \right)\sin\left( \frac{\theta - 2\theta}{2} \right)}{2\cos\left( \frac{2\theta + \theta}{2} \right)\sin\left( \frac{2\theta - \theta}{2} \right)} ............[\because \sin A - \sin B = 2 \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)\text{ and } \cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\sin\left( \frac{- \theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\left( - \sin\frac{\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\left( \frac{3\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \tan\left( \frac{3\theta}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate `2^(x^3)` ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x3 + tan x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
Find the minimum value of (ax + by), where xy = c2.