English

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , 0 < X < 1 2 , Find D Y D X . ? - Mathematics

Advertisements
Advertisements

Question

If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?

Sum

Solution

\[\text{ Here, y }= \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}\]

\[\text{ Put 2x  }= \cos\theta\]

\[ \therefore y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left( \sin\theta \right)\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] . . . \left( i \right)\]

\[\text{Here}, 0 < x < \frac{1}{2}\]

\[ \Rightarrow 0 < 2x < 1\]

\[ \Rightarrow 0 < \cos\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text{and}\]

\[ \Rightarrow 0 > - \theta > - \frac{\pi}{2}\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - \theta \right) > 0\]

\[ \Rightarrow 0 < \left( \frac{\pi}{2} - \theta \right) < \frac{\pi}{2}\]

\[\text{ So, from equation} \left( i \right), \]

\[ y = \theta + 2\left( \frac{\pi}{2} - \theta \right) .......\left[ Since, \cos^{- 1} \left( \cos\left( \theta \right) \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow y = + \pi - 2\theta\]

\[ \Rightarrow y = \pi - \theta\]

\[ \Rightarrow y = \pi - \cos^{- 1} \left( 2x \right) ........\left[ \text{Since}, 2x = cos\theta \right]\]

Differentiate it with respect to x using chain rule,

\[\frac{d y}{d x} = 0 - \left[ \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right]\frac{d}{dx}\left( 2x \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{1}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]

\[ \therefore \frac{d y}{d x} = \frac{2}{\sqrt{1 - 4 x^2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 42 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate the following functions from first principles log cos x ?


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate etan x ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Write the derivative of sinx with respect to cos x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function ex sin 5x  ?


Find the second order derivatives of the following function  log (log x)  ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×