Advertisements
Advertisements
Question
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Solution
\[\text{ Here, y }= \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}\]
\[\text{ Put 2x }= \cos\theta\]
\[ \therefore y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]
\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left( \sin\theta \right)\]
\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] . . . \left( i \right)\]
\[\text{Here}, 0 < x < \frac{1}{2}\]
\[ \Rightarrow 0 < 2x < 1\]
\[ \Rightarrow 0 < \cos\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]
\[\text{and}\]
\[ \Rightarrow 0 > - \theta > - \frac{\pi}{2}\]
\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - \theta \right) > 0\]
\[ \Rightarrow 0 < \left( \frac{\pi}{2} - \theta \right) < \frac{\pi}{2}\]
\[\text{ So, from equation} \left( i \right), \]
\[ y = \theta + 2\left( \frac{\pi}{2} - \theta \right) .......\left[ Since, \cos^{- 1} \left( \cos\left( \theta \right) \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow y = + \pi - 2\theta\]
\[ \Rightarrow y = \pi - \theta\]
\[ \Rightarrow y = \pi - \cos^{- 1} \left( 2x \right) ........\left[ \text{Since}, 2x = cos\theta \right]\]
Differentiate it with respect to x using chain rule,
\[\frac{d y}{d x} = 0 - \left[ \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right]\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{1}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[ \therefore \frac{d y}{d x} = \frac{2}{\sqrt{1 - 4 x^2}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles log cos x ?
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate etan x ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function log (log x) ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =