Advertisements
Advertisements
Question
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Solution
\[\text{ Let y } = x^{x^2 - 3} + \left( x - 3 \right)^{x^2} \]
\[ \text{ Also, let u } = x^{x^2 - 3} \text{ and }v = \left( x - 3 \right)^{x^2} \]
\[ \therefore y = u + v\]
Differentiate both sides with respect to x,
\[\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= x^{x^2 - 3} \]
\[ \therefore \log u = \log\left( x^{x^2 - 3} \right)\]
\[ \Rightarrow \log u = \left( x^2 - 3 \right) \log x\]
Differentiating with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( x^2 - 3 \right) + \left( x^2 - 3 \right)\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \log x\left( 2x \right) + \left( x^2 - 3 \right)\left( \frac{1}{x} \right)\]
\[ \Rightarrow \frac{du}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right]\]
\[\text{ Also, v }= \left( x - 3 \right)^{x^2} \]
\[ \therefore \log v = \log \left( x - 3 \right)^{x^2} \]
\[ \Rightarrow \log v = x^2 \log\left( x - 3 \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right)\frac{d}{dx}\left( x^2 \right) + x^2 \frac{d}{dx}\left[ \log\left( x - 3 \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right) \left( 2x \right) + x^2 \left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ 2x \log\left( x - 3 \right) + \frac{x^2}{x - 3} \times 1 \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x\log\left( x - 3 \right) \right]\]
\[\text{ Substituing the expressions of }\frac{du}{dx}and \frac{dv}{dx}in equation \left( i \right)\]
\[\frac{dy}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right] + \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x \log\left( x - 3 \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]