Advertisements
Advertisements
Question
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Solution
\[\text{ Let y } = \left( \cos x \right)^x + \left( \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow y = e^{ \log \left( \cos x\right)^x} + e^{\log \left( \sin x \right)^\frac{1}{x} } \]
\[ \Rightarrow y = e^{ x\log\left( \cos x \right) } + e^\frac{1}{x}\log\sin x\]
Differentiating with respect to x,
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{x \log\cos x} \right) + \frac{d}{dx}\left( e^\frac{1}{x}\log \sin x \right)\]
\[ = e^{x \log\cos x} \times \frac{d}{dx}\left( x \log\cos x \right) + e^\frac{1}{x}\log \sin x \frac{d}{dx}\left( \frac{1}{x}\log\sin x \right)\]
\[ = e^{\log \left( \cos x \right)^x }\times \left[ x\frac{d}{dx}\left( \log\cos x \right) + \log\cos x \times \frac{d}{dx}\left( x \right) \right] + e^{\log \left( \sin x \right)^\frac{1}{x} }\times \left[ \frac{1}{x}\frac{d}{dx}\left( \log\sin x \right) + \log\sin x\frac{d}{dx}\left( \frac{1}{x} \right) \right]\]
\[ = \left( \cos x \right)^x \left[ x\left( \frac{1}{\cos x} \right)\frac{d}{dx}\left( \cos x \right) + \log\cos x\left( 1 \right) \right] + \left( \sin \right)^\frac{1}{x} \left[ \frac{1}{x} \times \frac{1}{\sin x} \times \frac{d}{dx}\left( \sin x \right) + \log\sin x\left( - \frac{1}{x^2} \right) \right]\]
\[ = \left( \cos x \right)^x \left[ x\left( \frac{1}{\cos x} \right)\left( - \sin x \right) + \log\cos x \right] + \left( \sin x \right)^\frac{1}{x} \left[ \frac{1}{x} \times \frac{1}{\sin x}\left( \cos x \right) - \frac{1}{x^2}\log\sin x \right]\]
\[ = \left( \cos x \right)^x \left[ \log\cos x - x \tan x \right] + \left( \sin x \right)^\frac{1}{x} \left[ \frac{\cot x}{x} - \frac{1}{x^2}\log\sin x \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate tan2 x ?
Differentiate etan x ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[{10}^{ \log \sin x }\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function sin (log x) ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is