Advertisements
Advertisements
Question
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Solution
\[\text{ We have, } x\sin\left( a + y \right) + \sin a\cos\left( a + y \right) = 0 \]
Differentiate with respect to x,
\[\Rightarrow \frac{d}{dx}\left[ x \sin\left( a + y \right) \right] + \frac{d}{dx}\left[ \sin a \cos\left( a + y \right) \right] = 0\]
\[ \Rightarrow \left[ x\frac{d}{dx}\sin \left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) \right] + \sin a\frac{d}{dx}\cos\left( a + y \right) = 0 \]
\[ \Rightarrow \left[ x \cos\left( a + y \right)\frac{d}{dx}\left( a + y \right) + \sin\left( a + y \right)\left( 1 \right) \right] + \sin a\left[ - \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right) \right] = 0\]
\[ \Rightarrow x \cos\left( a + y \right)\frac{d y}{d x} + \sin\left( a + y \right) - \sin a\sin\left( a + y \right)\frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{d y}{d x}\left[ x \cos\left( a + y \right) - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right)\]
\[ \Rightarrow \frac{d y}{d x}\left[ - \sin a\frac{\cos^2 \left( a + y \right)}{\sin\left( a + y \right)} - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right) \left[ \because x = - \sin a\frac{\cos\left( a + y \right)}{\sin\left( a + y \right)} \right]\]
\[ \Rightarrow - \frac{d y}{d x}\left[ \frac{\sin a \cos^2 \left( a + y \right) + \sin a \sin^2 \left( a + y \right)}{\sin\left( a + y \right)} \right] = - \sin\left( a + y \right)\]
\[ \Rightarrow \frac{d y}{d x} = \sin\left( a + y \right)\left[ \frac{\sin\left( a + y \right)}{\sin a\left\{ \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) \right\}} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{\sin^2 \left( a + y \right)}{\sin a} \]
APPEARS IN
RELATED QUESTIONS
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function log (sin x) ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
Differentiate `log [x+2+sqrt(x^2+4x+1)]`