English

If X Sin ( a + Y ) + Sin a Cos ( a + Y ) = 0 Prove that D Y D X = Sin 2 ( a + Y ) Sin a ? - Mathematics

Advertisements
Advertisements

Question

If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

Sum

Solution

\[\text{ We have, } x\sin\left( a + y \right) + \sin a\cos\left( a + y \right) = 0 \]

Differentiate with respect to x, 

\[\Rightarrow \frac{d}{dx}\left[ x \sin\left( a + y \right) \right] + \frac{d}{dx}\left[ \sin a \cos\left( a + y \right) \right] = 0\]

\[ \Rightarrow \left[ x\frac{d}{dx}\sin \left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) \right] + \sin a\frac{d}{dx}\cos\left( a + y \right) = 0 \]

\[ \Rightarrow \left[ x \cos\left( a + y \right)\frac{d}{dx}\left( a + y \right) + \sin\left( a + y \right)\left( 1 \right) \right] + \sin a\left[ - \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right) \right] = 0\]

\[ \Rightarrow x \cos\left( a + y \right)\frac{d y}{d x} + \sin\left( a + y \right) - \sin a\sin\left( a + y \right)\frac{d y}{d x} = 0\]

\[ \Rightarrow \frac{d y}{d x}\left[ x \cos\left( a + y \right) - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right)\]

\[ \Rightarrow \frac{d y}{d x}\left[ - \sin a\frac{\cos^2 \left( a + y \right)}{\sin\left( a + y \right)} - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right) \left[ \because x = - \sin a\frac{\cos\left( a + y \right)}{\sin\left( a + y \right)} \right]\]

\[ \Rightarrow - \frac{d y}{d x}\left[ \frac{\sin a \cos^2 \left( a + y \right) + \sin a \sin^2 \left( a + y \right)}{\sin\left( a + y \right)} \right] = - \sin\left( a + y \right)\]

\[ \Rightarrow \frac{d y}{d x} = \sin\left( a + y \right)\left[ \frac{\sin\left( a + y \right)}{\sin a\left\{ \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) \right\}} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \frac{\sin^2 \left( a + y \right)}{\sin a} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 22 | Page 75

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


Find the second order derivatives of the following function  log (sin x) ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×