Advertisements
Advertisements
Question
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
Options
2
1
0
−1
Solution
(c) 0
\[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left( \frac{\frac{1 - 2 \log_e x}{1 + 2 \log_e x} + \frac{3 + 2 \log_e x}{1 - 6 \log_e x}}{1 - \left( \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right)\left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\left( 1 - 2 \log_e x \right)\left( 1 - 6 \log_e x \right) + \left( 3 + 2 \log_e x \right)\left( 1 + 2 \log_e x \right)}{\left( 1 + 2 \log_e x \right)\left( 1 - 6 \log_e x \right) - \left( 1 - 2 \log_e x \right)\left( 3 + 2 \log_e x \right)} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{4 + 16 \left( \log_e x \right)^2}{- 2 - 8 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left[ \frac{4\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}}{- 2\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}} \right]\]
\[ \Rightarrow y = \tan^{- 1} \left[ - 2 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles log cosec x ?
Differentiate tan 5x° ?
Differentiate \[3^{e^x}\] ?
Differentiate logx 3 ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x cos x ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is