English

If Y = Tan − 1 { Log E ( E / X 2 ) Log E ( E X 2 ) } + Tan − 1 ( 3 + 2 Log E X 1 − 6 Log E X ) , Then D 2 Y D X 2 = - Mathematics

Advertisements
Advertisements

Question

If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 

Options

  • 2

  • 1

  • 0

  • −1

MCQ

Solution

(c) 0

\[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left( \frac{\frac{1 - 2 \log_e x}{1 + 2 \log_e x} + \frac{3 + 2 \log_e x}{1 - 6 \log_e x}}{1 - \left( \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right)\left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\left( 1 - 2 \log_e x \right)\left( 1 - 6 \log_e x \right) + \left( 3 + 2 \log_e x \right)\left( 1 + 2 \log_e x \right)}{\left( 1 + 2 \log_e x \right)\left( 1 - 6 \log_e x \right) - \left( 1 - 2 \log_e x \right)\left( 3 + 2 \log_e x \right)} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{4 + 16 \left( \log_e x \right)^2}{- 2 - 8 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left[ \frac{4\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}}{- 2\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}} \right]\]

\[ \Rightarrow y = \tan^{- 1} \left[ - 2 \right]\]

\[ \Rightarrow \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 10 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles log cosec x ?


Differentiate tan 5x° ?


Differentiate \[3^{e^x}\] ?


Differentiate logx 3 ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function x cos x ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×