Advertisements
Advertisements
Question
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Solution
\[\text{Let} y = e^{\sin^{- 1} 2x} \]
Differentiate it with respect to x we get,
\[\frac{d y}{d x} = \frac{d}{dx}\left( e^{\sin^{- 1} 2x} \right)\]
\[ = e^{\sin^{- 1} 2x} \times \frac{d}{dx}\left( \sin^{- 1} 2x \right) \left[ \text{Using chain rule} \right]\]
\[ = e^{\sin^{- 1} 2x} \times \frac{1}{\sqrt{1 - \left( 2x \right)^2}}\frac{d}{dx}\left( 2x \right)\]
\[ = \frac{2 e^{\sin^{- 1} 2x}}{\sqrt{1 - 4 x^2}}\]
\[So, \frac{d}{dx} \left( e^{\sin^{- 1} 2x} \right) =\frac{2 e^{\sin^{- 1} 2x}}{\sqrt{1 - 4 x^2}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cos x ?
Differentiate tan2 x ?
Differentiate log7 (2x − 3) ?
Differentiate logx 3 ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function log (sin x) ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]