Advertisements
Advertisements
Question
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Solution
\[\text{ We have, y } = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}} \]
\[ \Rightarrow y = \left( \tan x \right)^y\]
Taking log on both sides,\[\log y = \log \left( \tan x \right)^y \]
\[ \Rightarrow \log y = y \log \tan x\]
Differentiating with respect to x using chain rule ,
\[\frac{1}{y}\frac{dy}{dx} = y\frac{d}{dx}\left\{ \log \tan x \right\} + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{y}{\tan x}\frac{d}{dx}\left( \tan x \right) + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{y} - \log \tan x \right) = \frac{y}{\tan x} \sec^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{\tan x} \sec^2 x \times \left( \frac{y}{1 - y\log \tan x} \right)\]
\[\text{Now}, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y \sec^2 \left( \frac{\pi}{4} \right)}{\tan\left( \frac{\pi}{4} \right)} \times \frac{y}{1 - y \log \tan\left( \frac{\pi}{4} \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y^2 \left( \sqrt{2} \right)^2}{1\left( 1 - y \log \tan 1 \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{2 \left( 1 \right)^2}{\left( 1 - 0 \right)} \left[ \begin{array}\because \left( y \right)_\frac{\pi}{4} = \left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{. . . \infty}}}\end{array} = 1 \right] \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 2\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles x2ex ?
Differentiate logx 3 ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
Differential coefficient of sec(tan−1 x) is ______.
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function sin (log x) ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?