Advertisements
Advertisements
Question
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Solution
\[\text{ We have, y } = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}} \]
\[ \Rightarrow y = u + v + w\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} . . . \left( i \right)\]
\[\text{ where u } = e^{x^{e^x}} , v = x^{e^{e^x}} \text{ and w } = e^{x^{x^e}} \]
\[\text{ Now, u } = e^{x^{e^x}} . . . \left( ii \right)\]
Taking log on both sides,
\[\log u = \log e^{x^{e^x}} \]
\[ \Rightarrow \log u = x^{e^x} \log e\]
\[ \Rightarrow \log u = x^{e^x} . . . \left( iii \right)\]
Taking log on both sides,
\[\log \log u = \log x^{e^x} \]
\[ \Rightarrow \log \log u = e^x \log x\]
Differentiating with respect to x,
\[\Rightarrow \frac{1}{\log u}\frac{d}{dx}\left( \log u \right) = e^x \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{1}{\log u}\frac{1}{u}\frac{du}{dx} = \frac{e^x}{x} + e^x \log x\]
\[ \Rightarrow \frac{du}{dx} = u\log u\left[ \frac{e^x}{x} + e^x \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = e^{x^{e^x}} \times x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] . . . \left( A \right)\]
\[ \left[ \text{ Using equation } \left( ii \right) \text{ and } \left( iii \right) \right]\]
\[\text{ Now, v } = x^{e^{e^x}} . . . \left( iv \right)\]
Taking log on both sides,
\[\log v = \log x^{e^{e^x}} \]
\[ \Rightarrow \log v = e^{e^x} \log x\]
\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^{e^x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} \frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} e^x \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] . . . \left( B \right) \]
\[ \left\{ \text{ Using equation } \left( 4 \right) \right\}\]
\[\text{ Now, w } = e^{x^{x^e}} . . . \left( v \right)\]
Taking log on both sides,
\[\log w = \log e^{x^{x^e}} \]
\[ \Rightarrow \log w = x^{x^e} \log e\]
\[ \Rightarrow \log w = x^{x^e} . . . \left( vi \right)\]
Taking log on both sides,
\[\log \log w = \log x^{x^e} \]
\[ \Rightarrow \log \log w = x^e \log x\]
\[\Rightarrow \frac{1}{\log w}\frac{d}{dx}\left( \log w \right) = x^e \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x^e \right)\]
\[ \Rightarrow \frac{1}{\log w}\left( \frac{1}{w} \right)\frac{dw}{dx} = x^e \left( \frac{1}{x} \right) + \log xe x^{e - 1} \]
\[ \Rightarrow \frac{dw}{dx} = w \log w\left[ x^{e - 1} + e \log x x^{e - 1} \right]\]
\[ \Rightarrow \frac{dw}{dx} = e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right) - - - - \left( C \right) \]
\[ \left[ \text{ using equation} \left( v \right), \left( vi \right) \right]\]
\[\text{ Using equation} \left( A \right), \left( B \right)\text{ and } \left( C \right) \text{ in equation } \left( i \right),\text{ we get }\]
\[\frac{dy}{dx} = e^{x^{e^x}} x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] + x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] + e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right)\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles ecos x.
Differentiate tan (x° + 45°) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
Find the second order derivatives of the following function log (log x) ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Differentiate sin(log sin x) ?
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?