हिंदी

If Y = E X E X + X E E X + E X X E , Prove that D Y D X = E X E X ⋅ X E X { E X X + E X ⋅ Log X } - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 

योग

उत्तर

\[\text{ We have, y } = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}} \]
\[ \Rightarrow y = u + v + w\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} . . . \left( i \right)\]
\[\text{ where u } = e^{x^{e^x}} , v = x^{e^{e^x}} \text{ and w } = e^{x^{x^e}} \]
\[\text{ Now, u } = e^{x^{e^x}} . . . \left( ii \right)\]

Taking log on both sides,

\[\log u = \log e^{x^{e^x}} \]
\[ \Rightarrow \log u = x^{e^x} \log e\]
\[ \Rightarrow \log u = x^{e^x} . . . \left( iii \right)\]

Taking log on both sides,

\[\log \log u = \log x^{e^x} \]
\[ \Rightarrow \log \log u = e^x \log x\]

Differentiating with respect to x,

\[\Rightarrow \frac{1}{\log u}\frac{d}{dx}\left( \log u \right) = e^x \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{1}{\log u}\frac{1}{u}\frac{du}{dx} = \frac{e^x}{x} + e^x \log x\]
\[ \Rightarrow \frac{du}{dx} = u\log u\left[ \frac{e^x}{x} + e^x \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = e^{x^{e^x}} \times x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] . . . \left( A \right)\]
\[ \left[ \text{ Using equation } \left( ii \right) \text{ and } \left( iii \right) \right]\]
\[\text{ Now, v } = x^{e^{e^x}} . . . \left( iv \right)\]

Taking log on both sides,

\[\log v = \log x^{e^{e^x}} \]
\[ \Rightarrow \log v = e^{e^x} \log x\]

\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^{e^x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} \frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} e^x \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] . . . \left( B \right) \]
\[ \left\{ \text{ Using equation } \left( 4 \right) \right\}\]
\[\text{ Now, w } = e^{x^{x^e}} . . . \left( v \right)\]

Taking log on both sides,

\[\log w = \log e^{x^{x^e}} \]
\[ \Rightarrow \log w = x^{x^e} \log e\]
\[ \Rightarrow \log w = x^{x^e} . . . \left( vi \right)\]

Taking log on both sides,

\[\log \log w = \log x^{x^e} \]
\[ \Rightarrow \log \log w = x^e \log x\]

\[\Rightarrow \frac{1}{\log w}\frac{d}{dx}\left( \log w \right) = x^e \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x^e \right)\]
\[ \Rightarrow \frac{1}{\log w}\left( \frac{1}{w} \right)\frac{dw}{dx} = x^e \left( \frac{1}{x} \right) + \log xe x^{e - 1} \]
\[ \Rightarrow \frac{dw}{dx} = w \log w\left[ x^{e - 1} + e \log x x^{e - 1} \right]\]
\[ \Rightarrow \frac{dw}{dx} = e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right) - - - - \left( C \right) \]
\[ \left[ \text{ using equation} \left( v \right), \left( vi \right) \right]\]
\[\text{ Using equation} \left( A \right), \left( B \right)\text{  and } \left( C \right) \text{ in equation } \left( i \right),\text{ we get }\]
\[\frac{dy}{dx} = e^{x^{e^x}} x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] + x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] + e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.06 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.06 | Q 7 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles e−x.


Differentiate (log sin x)?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×