Advertisements
Advertisements
प्रश्न
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
उत्तर
\[y = \left( x + \sqrt{1 + x^2} \right)^n \]
Differentiating both sides w.r.t. x, we get
\[\frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \frac{d}{dx}\left( x + \sqrt{1 + x^2} \right)\]
\[\Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( 1 + \frac{2x}{2\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{n \left( x + \sqrt{1 + x^2} \right)^n}{\sqrt{1 + x^2}}\]
\[\Rightarrow \frac{dy}{dx} = \frac{ny}{\sqrt{1 + x^2}}\]
\[ \Rightarrow \sqrt{1 + x^2}\frac{dy}{dx} = ny\]
Squaring both sides, we get
\[\left( 1 + x^2 \right) \left( \frac{dy}{dx} \right)^2 = n^2 y^2\]
Again differentiating both sides w.r.t. x, we get
\[\left( 1 + x^2 \right) \times \left( 2\frac{dy}{dx} \times \frac{d^2 y}{d x^2} \right) + \left( \frac{dy}{dx} \right)^2 \times 2x = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow 2\frac{dy}{dx}\left[ \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} \right] = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles eax+b.
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
Differentiate `log [x+2+sqrt(x^2+4x+1)]`