हिंदी

Differentiate Log { X + 2 + √ X 2 + 4 X + 1 } - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `log [x+2+sqrt(x^2+4x+1)]`

योग

उत्तर

Let y = `log [x+2+sqrt(x^2+4x+1)]`

Differentiate it with respect to x we get,

`(dy)/(dx)=d/(dx)log[x+2+sqrt(x^2+4x+1)]`

`=1/([x+2+sqrt(x^4+4x+1)])d/(dx)[x+2+(x^2+4x+1)^(1/2)]`      [Using chain rule]

`=1/([x+2+sqrt(x^4+4x+1)])xx[1+0+1/2(x^2+4x+1)^(-1/2)d/(dx)(x^2+4x+1)]`

`=(1+(2x+4)/(2(sqrt(x^2+4x+1))))/([x+2+sqrt(x^4+4x+1)])`

`=(sqrt(x^2+4x+1)+x+2)/([x+2+sqrt(x^2+4x+1)]xxsqrt(x^2+4x+1))`

`=1/sqrt(x^2+4x+1)`

So, `d/(dx)log[x+2+sqrt(x^2+4x+1)]=1/sqrt(x^2+4x+1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.02 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.02 | Q 46 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles eax+b.


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = a + bx2, a, b arbitrary constants, then

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×