Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
उत्तर
\[\text{ Let } f\left( x \right) = e^\sqrt{2x} \]
\[ \Rightarrow f\left( x + h \right) = e^\sqrt{2\left( x + h \right)} \]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{{}^\sqrt{2\left( x + h \right)}} - e^{{}^\sqrt{2x}}}{h}\]
\[ = \lim_{h \to 0} e^\sqrt{2x} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{h} \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{\sqrt{2\left( x + h \right)} - \sqrt{2x}} \right] \times \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \left[ \because \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \times \frac{\sqrt{2\left( x + h \right)} + \sqrt{2x}}{\sqrt{2\left( x + h \right)} + \sqrt{2x}} \] [Rationalising the numerator]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2\left( x + h \right) - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2x + 2h - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)} \]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2h}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2}{\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]
\[\text{ Hence }, \frac{d}{dx}\left( e^\sqrt{2x} \right) = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
Differential coefficient of sec(tan−1 x) is ______.
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function e6x cos 3x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]