हिंदी

Differentiate the Following Functions from First Principles E √ 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].

योग

उत्तर

\[\text{ Let } f\left( x \right) = e^\sqrt{2x} \]
\[ \Rightarrow f\left( x + h \right) = e^\sqrt{2\left( x + h \right)} \]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{{}^\sqrt{2\left( x + h \right)}} - e^{{}^\sqrt{2x}}}{h}\]
\[ = \lim_{h \to 0} e^\sqrt{2x} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{h} \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{\sqrt{2\left( x + h \right)} - \sqrt{2x}} \right] \times \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \left[ \because \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \times \frac{\sqrt{2\left( x + h \right)} + \sqrt{2x}}{\sqrt{2\left( x + h \right)} + \sqrt{2x}} \]   [Rationalising the numerator]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2\left( x + h \right) - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2x + 2h - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)} \]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2h}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2}{\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]
\[\text{ Hence }, \frac{d}{dx}\left( e^\sqrt{2x} \right) = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.01 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.01 | Q 5 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


Differential coefficient of sec(tan−1 x) is ______.


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function e6x cos 3x  ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×