Advertisements
Advertisements
प्रश्न
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
उत्तर
Here,
\[y = e^{\tan^{- 1} x }\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = e^{\tan^{- 1} x } \times \frac{1}{1 + x^2}\]
\[\text { Differentiating again w . r . t . x, we get}\]
\[\frac{d^2 y}{d x^2} = e^{\tan^{- 1} x} \frac{1}{\left( 1 + x^2 \right)^2} + e^{\tan^{- 1} x} \frac{- 2x}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \frac{e^{\tan^{- 1} x}}{\left( 1 + x^2 \right)} - \frac{2x e^{\tan^{- 1} x}}{\left( 1 + x^2 \right)}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \frac{d y}{d x} - 2x\frac{d y}{d x}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{d y}{d x} = 0\]
Hence proved
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate (log sin x)2 ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`