Advertisements
Advertisements
प्रश्न
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
उत्तर
\[\text{ We have}, \left( \sin x \right)^y = \left( \cos y \right)^x \]
Taking log on both sides,
\[\log \left( \sin x \right)^y = \log \left( \cos y \right)^x \]
\[ \Rightarrow y \log\left( \sin x \right) = x \log\left( \cos y \right) \]
Differentiating with respect to x,
\[\frac{d}{dx}\left[ y \log \sin x \right] = \frac{d}{dx}\left[ x \log\cos y \right]\]
\[ \Rightarrow y\frac{d}{dx}\left( \log \sin x \right) + \log \sin x\frac{dy}{dx} = x\frac{dy}{dx}\left( \log \cos y \right) + \log \cos y\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow y\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log \sin x\frac{dy}{dx} = \frac{x}{\cos y}\frac{d}{dx}\left( \cos y \right) + \log\cos y\left( 1 \right)\]
\[ \Rightarrow \frac{y}{\sin x}\left( \cos x \right) + \log \sin x\frac{dy}{dx} = \frac{x}{\cos y}\left( - \sin y \right)\frac{dy}{dx} + \log \cos y\]
\[ \Rightarrow y \cot x + \log \sin x\frac{dy}{dx} = - x \tan y\frac{dy}{dx} + \log \cos y\]
\[ \Rightarrow \frac{dy}{dx}\left( \log \sin x + x \tan y \right) = \log \cos y - y \cot x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\log \cos y - y \cot x}{\log \sin x + x \tan y}\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (3x + 5) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate sin2 (2x + 1) ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function log (log x) ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`