हिंदी

Differentiate Tan − 1 ( 1 + a X 1 − a X ) with Respect to √ 1 + a 2 X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?

उत्तर

\[\text { Let, u }= \tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\]

\[\text { Put ax } = \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]

\[ \Rightarrow u = \frac{\pi}{4} + \theta\]

\[ \Rightarrow u = \frac{\pi}{4} + \tan^{- 1} \left( ax \right) \left[ \text { Since}, \tan\theta = ax \right] \] 

Differentiating it with respect to x,

\[\frac{du}{dx} = 0 + \frac{1}{1 + \left( ax \right)^2}\frac{d}{dx}\left( ax \right) \]

\[ \Rightarrow \frac{du}{dx} = \frac{a}{1 + a^2 x^2} . . . \left( i \right) \]

\[\text { Now,} \]

\[\text { Let, v } = \sqrt{1 + a^2 x^2}\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\frac{d}{dx}\left( 1 + a^2 x^2 \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\left( 2 a^2 x \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{a^2 x}{\sqrt{1 + a^2 x^2}} . . . \left( ii \right) \]

\[\text { Dividing equation } \left( i \right) \text { by }\left( ii \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{a}{1 + a^2 x^2} \times \frac{\sqrt{1 + a^2 x^2}}{a^2 x}\]

\[\frac{du}{dv} = \frac{1}{ax\sqrt{1 + a^2 x^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.08 [पृष्ठ ११३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.08 | Q 10 | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function tan−1 x ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×