Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
उत्तर
\[\text { Let, u }= \tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\]
\[\text { Put ax } = \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]
\[ \Rightarrow u = \frac{\pi}{4} + \theta\]
\[ \Rightarrow u = \frac{\pi}{4} + \tan^{- 1} \left( ax \right) \left[ \text { Since}, \tan\theta = ax \right] \]
Differentiating it with respect to x,
\[\frac{du}{dx} = 0 + \frac{1}{1 + \left( ax \right)^2}\frac{d}{dx}\left( ax \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{a}{1 + a^2 x^2} . . . \left( i \right) \]
\[\text { Now,} \]
\[\text { Let, v } = \sqrt{1 + a^2 x^2}\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\frac{d}{dx}\left( 1 + a^2 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\left( 2 a^2 x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{a^2 x}{\sqrt{1 + a^2 x^2}} . . . \left( ii \right) \]
\[\text { Dividing equation } \left( i \right) \text { by }\left( ii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{a}{1 + a^2 x^2} \times \frac{\sqrt{1 + a^2 x^2}}{a^2 x}\]
\[\frac{du}{dv} = \frac{1}{ax\sqrt{1 + a^2 x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function tan−1 x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =