Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
उत्तर
\[\text { Let, u } = {\sin^{- 1}} \left( 2x\sqrt{1 - x^2} \right)\]
\[\text { Put x } = \sin\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta\cos\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { Let v } = \tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sin\theta}{\sqrt{1 - \sin^2 \theta}} \right) \]
\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sin\theta}{\cos\theta} \right)\]
\[ \Rightarrow v = \tan^{- 1} \left( \tan\theta \right) . . . \left( ii \right)\]
\[\text { Here }, - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{1}{\sqrt{2}} < \sin\theta < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]
\[\text { So, from equation } \left( i \right), \]
\[u = 2\theta ........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow u = 2 \sin^{- 1} x ........\left[ \text { Since, x } = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
From equation (ii),
\[v = \theta ........\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow v = \sin^{- 1} x ........\left[ \text { Since, x } = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{1}\]
\[ \therefore \frac{du}{dv} = 2\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate \[3^{e^x}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to