Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \tan x \right)^{1/x}\] ?
उत्तर
\[\text{ Let y }= \left( \tan x \right)^\frac{1}{x} . . . \left( i \right)\]
\[\text{ Taking log on both sides,} \]
\[\log y = \log \left( \tan x \right)^\frac{1}{x} \]
\[ \Rightarrow \log y = \frac{1}{x}\log\left( \tan x \right) \]
\[\text{ Differentiating with respect to x}, \]
\[\frac{1}{y}\frac{dy}{dx} = \frac{1}{x}\frac{d}{dx}\left\{ \log\left( \tan x \right) \right\} + \log\left( \tan x \right)\frac{d}{dx}\left( \frac{1}{x} \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x} \times \frac{1}{\tan x}\frac{d}{dx}\left( \tan x \right) + \log\left( \tan x \right)\left( - \frac{1}{x^2} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x\tan x}\left( \sec^2 x \right) - \frac{\log\left( \tan x \right)}{x^2}\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{\sec^2 x}{x\tan x} - \frac{\log\left( \tan x \right)}{x^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \tan x \right)^\frac{1}{x} \left[ \frac{\sec^2 x}{x\tan x} - \frac{\log\left( \tan x \right)}{x^2} \right] \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles ecos x.
Differentiate sin2 (2x + 1) ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is