हिंदी

If y = x^x, prove that (d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0. - Mathematics

Advertisements
Advertisements

प्रश्न

 

If y = xx, prove that d2ydx21y(dydx)2yx=0.

 

उत्तर

y = xx

Applying logarithm, 

log y = x log x

1ydydx=logx+×x1x=1+logx

 

dydx=xx[1+logx]

d2ydx2=d(x2)dx(1+logx)+xx[ddx(1+logx)]

 =xx(1+logx)(1+logx)+xx[1x]

=xx(1+logx)2+xx-1

d2ydx2-1y(dydx)2-yx=xx(1+logx)2+xx-1-1x2(xx(1+logx)2)-x2x

= xx(1+log x)2 + xx1 xx(1+log x)2  xx1

= 0

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles eax+b.


Differentiate the following functions from first principles log cosec x ?


 If y=x+1+x1 , prove that x21dydx=12y ?


If y=ex+ex prove that  dydx=y24 ?


Differentiate sin1{sinx+cosx2},3π4<x<π4 ?


Differentiate tan1(1+a2x21ax),x0 ?


If  y=cos1(2x)+2cos114x2,0<x<12, find dydx. ?


If y=sin1(6x19x2),132<x<132 dydx ?


Find  dydx in the following case x2a2+y2b2=1 ?


If xy=1 prove that dydx+y2=0 ?


Differentiate  xxcosx+x2+1x21  ?


Differentiate(x+1x)x+x(1+1x) ?


Find dydx , when x=3at1+t2, and y=3at21+t2 ?


Find dydx ,When x=eθ(θ+1θ) and y=eθ(θ1θ) ?


If x=a(θsinθ)and,y=a(1+cosθ), find dydx at θ=π3 ?

 


Differentiate tan1(x1x+1) with respect to sin1(3x4x3), if 12<x<12 ?


Differentiate sin1(2ax1a2x2) with respect to 1a2x2, if 12<ax<12 ?


If y=xx, find dydx at x=e ?


If y=(1+1x)x, thendydx= ____________ .


If x=acos3θ,y=asin3θ, then 1+(dydx)2= ____________ .


If y=sin1(1x21+x2), then dydx= _____________ .


Let  =sin1(2x1+x2) and V=tan1(2x1x2), then ddV= ____________ .


If y = cos−1 x, find d2ydx2 in terms of y alone ?


 If x =a(cost+logtant2) and y =a(sint), evaluate d2ydx2 at t =π3 ?


 If x =asintbcost,y=acost+bsint, prove that d2ydx2=x2+y2y3 ?


 If y =a{x+x2+1}n+b{xx2+1}n, prove that (x2+1)d2ydx2+xdydxn2y=0

Disclaimer: There is a misprint in the question,

(x2+1)d2ydx2+xdydxn2y=0 must be written instead of

(x21)d2ydx2+xdydxn2y=0 ?


If x = 2aty = at2, where a is a constant, then find d2ydx2 at x=12 ?


If logy = tan–1 x, then show that (1+x2)d2ydx2+(2x-1)dydx=0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.