Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles log cosec x ?
उत्तर
\[\text{Let} f\left( x \right) = \text{log cosecx}\]
\[ \Rightarrow f\left( x + h \right) = \text{log cosec}\left( x + h \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\text{log cosec}\left( x + h \right) - \log cosecx}{h}\]
\[ = \lim_{h \to 0} \frac{\log\left\{ \frac{cosec\left( x + h \right)}{cosecx} \right\}}{h}\]
\[ = \lim_{h \to 0} \frac{\log\left\{ 1 + \left( \frac{\sin x}{\sin\left( x + h \right)} - 1 \right) \right\}}{h}\]
\[ = \lim_{h \to 0} \left\{ \frac{\log\left\{ 1 + \left( \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right) \right\}}{\left\{ \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right\}} \right\}\frac{\left\{ \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right\}}{h}\]
\[ = \lim_{h \to 0} \frac{2\cos\left( \frac{x + x + h}{2} \right)\sin\left( \frac{x - x - h}{2} \right)}{\sin\left( x + h \right)h} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 and \sin A - \sin B = 2\cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = \lim_{h \to 0} \frac{2\cos\left( \frac{2x + h}{2} \right)}{\sin\left( x + h \right) \left( - 2 \right)}\left\{ \frac{\sin\left( - \frac{h}{2} \right)}{- \frac{h}{2}} \right\} \left[ \because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = - \cot x\]
\[ \therefore \frac{d}{dx}\left( \text{log cosec x} \right) = - \cot x\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (log x) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
f(x) = xx has a stationary point at ______.