Advertisements
Advertisements
प्रश्न
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
उत्तर
\[\text{ We have,} x^{13} y^7 = \left( x + y \right)^{20} \]
Taking log on both sides,
\[\log\left( x^{13} y^7 \right) = \log \left( x + y \right)^{20} \]
\[ \Rightarrow 13\log x + 7\log y = 20\log\left( x + y \right)\]
Differentiating with respect to x using chain rule,
\[13\frac{d}{dx}\left( \log x \right) + 7\frac{d}{dx}\left( \log y \right) = 20\frac{d}{dx}\log\left( x + y \right)\]
\[ \Rightarrow \frac{13}{x} + \frac{7}{y}\frac{dy}{dx} = \frac{20}{x + y}\frac{d}{dx}\left( x + y \right)\]
\[ \Rightarrow \frac{13}{x} + \frac{7}{y}\frac{dy}{dx} = \frac{20}{x + y}\left[ 1 + \frac{dy}{dx} \right]\]
\[ \Rightarrow \frac{7}{y}\frac{dy}{dx} - \frac{20}{x + y}\frac{dy}{dx} = \frac{20}{x + y} - \frac{13}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{7}{y} - \frac{20}{x + y} \right] = \frac{20}{x + y} - \frac{13}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{7\left( x + y \right) - 20y}{y\left( x + y \right)} \right] = \left[ \frac{20x - 13\left( x + y \right)}{x\left( x + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left[ \frac{20x - 13x - 13y}{x\left( x + y \right)} \right]\left[ \frac{y\left( x + y \right)}{7x + 7y - 20y} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\left( \frac{7x - 13y}{7x - 13y} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan 5x° ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Differentiate sin(log sin x) ?
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]