हिंदी

If Y = Log a X , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 

उत्तर

\[\text{ We have, y} = \log_a x\]

\[ \Rightarrow y = \frac{\log x}{\log a} \left[ \because \log_a b = \frac{\log b}{\log a} \right]\]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{\log a}\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\log a}\left( \frac{1}{x} \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.09 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.09 | Q 18 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[{10}^\left( {10}^x \right)\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×