हिंदी

If √ 1 − X 6 + √ 1 − Y 6 = a 3 ( X 3 − Y 3 ) Then D Y D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .

विकल्प

  • \[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]

  • \[\frac{y^2}{x^2}\sqrt{\frac{1 - y^6}{1 + x^6}}\]

  • \[\frac{x^2}{y^2}\sqrt{\frac{1 - x^6}{1 - y^6}}\]

  • none of these

MCQ

उत्तर

\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]

 

\[\text { We have }, \sqrt{1 - x^6} + \sqrt{1 - y^6} = a\left( x^3 - y^3 \right)\]
\[\text { Putting } x^3 = \sin A \text { and }y^3 = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) = 2a \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\]
\[ \Rightarrow \cot\left( \frac{A - B}{2} \right) = a\]
\[ \Rightarrow \frac{A - B}{2} = \cot^{- 1} \left( a \right)\]
\[ \Rightarrow A - B = 2 \cot^{- 1} \left( a \right)\]
\[ \Rightarrow \sin^{- 1} x^3 - \sin^{- 1} y^3 = 2 \cot^{- 1} \left( a \right)\]

\[\Rightarrow \frac{1}{\sqrt{1 - x^6}} \times \frac{d}{dx}\left( x^3 \right) - \frac{1}{\sqrt{1 - y^6}} \times \frac{d}{dx}\left( y^3 \right) = 0\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^6}} \times 3 x^2 - \frac{1}{\sqrt{1 - y^6}} \times 3 y^2 \times \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2}{y^2}\sqrt{\frac{1 - y^6}{1 - x^6}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.10 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.10 | Q 27 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate \[3^{e^x}\] ?


Differentiate logx 3 ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function tan−1 x ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×