Advertisements
Advertisements
प्रश्न
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
विकल्प
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\frac{y^2}{x^2}\sqrt{\frac{1 - y^6}{1 + x^6}}\]
\[\frac{x^2}{y^2}\sqrt{\frac{1 - x^6}{1 - y^6}}\]
none of these
उत्तर
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\text { We have }, \sqrt{1 - x^6} + \sqrt{1 - y^6} = a\left( x^3 - y^3 \right)\]
\[\text { Putting } x^3 = \sin A \text { and }y^3 = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) = 2a \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\]
\[ \Rightarrow \cot\left( \frac{A - B}{2} \right) = a\]
\[ \Rightarrow \frac{A - B}{2} = \cot^{- 1} \left( a \right)\]
\[ \Rightarrow A - B = 2 \cot^{- 1} \left( a \right)\]
\[ \Rightarrow \sin^{- 1} x^3 - \sin^{- 1} y^3 = 2 \cot^{- 1} \left( a \right)\]
\[\Rightarrow \frac{1}{\sqrt{1 - x^6}} \times \frac{d}{dx}\left( x^3 \right) - \frac{1}{\sqrt{1 - y^6}} \times \frac{d}{dx}\left( y^3 \right) = 0\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^6}} \times 3 x^2 - \frac{1}{\sqrt{1 - y^6}} \times 3 y^2 \times \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2}{y^2}\sqrt{\frac{1 - y^6}{1 - x^6}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[3^{e^x}\] ?
Differentiate logx 3 ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function tan−1 x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = xx has a stationary point at ______.