Advertisements
Advertisements
प्रश्न
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
विकल्प
\[\frac{n\left( n + 1 \right)}{2}\]
\[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
\[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
none of these
उत्तर
(c) \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
Here,
\[f\left( x \right) = \left( \cos x + i \sin x \right)\left( \cos2x + i \sin2x \right) . . . \left( \cos nx + i \sin nx \right)\]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right) \left( \cos x + i \sin x \right)^2 . . . \left( \cos x + i \sin x \right)^n \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^{1 + 2 + 3 . . . . . . . . . . . n} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^\frac{n\left( n + 1 \right)}{2} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^a \left[ \text { where a } = \frac{n\left( n + 1 \right)}{2} \right]\]
\[ \Rightarrow f\left( x \right) = \left( \cos ax + i \sin ax \right) . . . \left( 1 \right)\]
\[ \Rightarrow f\left( 1 \right) = \left( \cos a + i \sin a \right)\]
\[ \Rightarrow 1 = \left( \cos a + i \sin a \right) . . . \left( 2 \right) \left[ \because f\left( 1 \right) = 1 \right]\]
\[\text { Differentiating eqn } . \left( 1 \right),\text { we get }, \]
\[f'\left( x \right) = a\left( - \sin ax + i \cos ax \right)\]
\[ \Rightarrow f''\left( x \right) = a^2 \left( - \cos ax - i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - a^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos a + i \sin a \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left[ \text{ Using } \left( 2 \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
f(x) = xx has a stationary point at ______.
f(x) = 3x2 + 6x + 8, x ∈ R