हिंदी

If X = a Sin 2 T ( 1 + Cos 2 T ) and Y = B Cos 2 T ( 1 − Cos 2 T ) , Show that at T = π 4 , D Y D X = B a ? - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?

उत्तर

\[x = a\sin2t\left( 1 + \cos2t \right) \text { and y} = b\cos2t\left( 1 - \cos2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = 2a\cos2t\left( 1 + \cos2t \right) + 2a\sin2t\left( 1 - \cos2t \right) \text { and } \frac{dy}{dt} = - 2b\sin2t\left( 1 - \cos2t \right) + 2b\cos2t\left( 1 + \cos2t \right) \]
\[ \Rightarrow \frac{dx}{dt} = 2a\left( \cos2t + \cos^2 2t + \sin2t - \sin2t\cos2t \right) \text {and } \frac{dy}{dt} = 2b\left( - \sin2t + \sin2t\cos2t + \cos2t + \cos^2 2t \right)\]
\[ \therefore \frac{dy}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 2b\left( - \sin2t + \sin2t\cos2t + \cos2t + \cos^2 2t \right)}{2a\left( \cos2t + \cos^2 2t + \sin2t - \sin2t\cos2t \right)}\]
\[ \Rightarrow \left( \frac{dy}{dt} \right)_{t = \frac{\pi}{4}} = \frac{- 2b\left( - \sin\frac{\pi}{2} + \sin\frac{\pi}{2}\cos\frac{\pi}{2} + \cos\frac{\pi}{2} + \cos^2 \frac{\pi}{2} \right)}{2a\left( \cos\frac{\pi}{2} + \cos^2 \frac{\pi}{2} + \sin\frac{\pi}{2} - \sin\frac{\pi}{2}\cos\frac{\pi}{2} \right)} = \frac{b}{a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.07 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.07 | Q 24 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×