हिंदी

If Y = { Log Cos X Sin X } { Log Sin X Cos X } − 1 + Sin − 1 ( 2 X 1 + X 2 ) , Find D Y D X at X = π 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?

योग

उत्तर

\[\text{ We have, y } = \left[ \log_{\cos x} \sin x \right] \left[ \log_{\sin x} \cos x \right]^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]

\[ \Rightarrow y = \left[ \log_{\cos x }\sin x \right]\left[ \log_{\cos x }\sin x \right] + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \left( \log_b a \right)^{- 1} \right]\]

\[ \Rightarrow y = \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \frac{\log b}{\log a} \right]\]

Differentiating with respect to x,

\[\frac{dy}{dx} = \frac{d}{dx} \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\frac{d}{dx}\left( \frac{\log \sin x}{\log \cos x} \right) + \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \times \frac{d}{dx}\left[ \frac{2x}{1 + x^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\left( \log \cos x \right)\frac{d}{dx}\left( \log \sin x \right) - \log \sin x\frac{d}{dx}\left( \log \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) - \log \sin x \times \frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \left( \frac{\cos x}{\sin x} \right) + \log \sin x \times \left( \frac{\sin x}{\cos x} \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{1 + x^2}{\sqrt{\left( 1 - x^2 \right)^2}} \right]\left[ \frac{2 + 2 x^2 - 4 x^2}{\left( 1 + x^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dy}{dx} = 2\frac{\log \sin x}{\left( \log \cos x \right)^3}\left( \cot x \log \cos x + \tan x \log \sin x \right) + \frac{2}{1 + x^2}\]

\[\text{ put x } = \frac{\pi}{4}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{\log \sin\frac{\pi}{4}}{\left( \log \cos\frac{\pi}{4} \right)^3} \right\} \left( \cot\frac{\pi}{4} \log \cos\frac{\pi}{4} + \tan\frac{\pi}{4} \log \sin\frac{\pi}{4} \right) + 2\left\{ \frac{1}{1 + \left( \frac{\pi}{4} \right)^2} \right\}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{1}{\left( \log\frac{1}{\sqrt{2}} \right)^2} \right\}\left( 1 \times \log\frac{1}{\sqrt{2}} + 1 \times \log\frac{1}{\sqrt{2}} \right) + 2\left( \frac{16}{16 + \pi^2} \right) \]

\[ \Rightarrow \frac{dy}{dx} = 2 \times \frac{2\log\left( \frac{1}{\sqrt{2}} \right)}{\left\{ \log\left( \frac{1}{\sqrt{2}} \right) \right\}^2} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{\log\left( \frac{1}{\sqrt{2}} \right)} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{- \frac{1}{2}\log2} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{8}{\log2} + \frac{32}{16 + \pi^2}\]

\[So, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 8\left[ \frac{4}{16 + \pi^2} - \frac{1}{\log2} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 30 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles x2ex ?


Differentiate the following functions from first principles log cosec x ?


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differential coefficient of sec(tan−1 x) is ______.


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×