Advertisements
Advertisements
प्रश्न
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
उत्तर
\[\text{ Let y } = e^{\sin x} + \left( \tan x \right)^x \]
\[ \Rightarrow y = e^{ \sin x } + e^{\log \left( \tan x \right)^x } \]
\[ \Rightarrow y = e^{\sin x }+ e^{x\log\left( \tan x \right)} \]
Differentiating with respect to x
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\sin x} \right) + \frac{d}{dx}\left\{ e^{x\log\left( \tan x \right)} \right\}\]
\[ = e^{ \sin x } \frac{d}{dx}\left( \sin x \right) + e^{x\log\left( \tan x \right)} \frac{d}{dx}\left( x \log\tan x \right) \]
\[ = e^{\sin x } \left( \cos x \right) + e^{\log \left( \tan x \right)^x }\left[ x\frac{d}{dx}\left( \log\tan x \right) + \log\tan x\frac{d}{dx}\left( x \right) \right]\]
\[ = e^{\sin x} \left( \cos x \right) + \left( \tan x \right)^x \left[ \frac{x}{\tan x}\left( \sec^2 x \right) + \log\tan x \right]\]
\[ = e^{\sin x } \left( \cos x \right) + \left( \tan x \right)^x \left[ x\sec x cosec x + \log\tan x \right]\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin (3x + 5) ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.