Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
उत्तर
\[\text{ We have, }f\left( x \right) = \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\}\]
\[\text{ and,} \]
\[ u\left( 1 \right) = v\left( 1 \right) , u'\left( 1 \right) = v'\left( 1 \right) = 2 ....... \left( \text{i} \right)\]
\[\Rightarrow f'\left( x \right) = \frac{d}{dx}\left[ \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]} \times \frac{d}{dx}\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right)\frac{d}{dx}\left\{ u\left( x \right) \right\} - u\left( x \right)\frac{d}{dx}\left\{ v\left( x \right) \right\}}{\left\{ v\left( x \right) \right\}^2} \right] \]
\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right) \times u'\left( x \right) - u\left( x \right) \times v'\left( x \right)}{\left\{ v\left( x \right) \right\}^2} \right]\]
\[\text{ Putting x = 1, we get }, \]
\[f'\left( 1 \right) = \frac{v\left( 1 \right)}{u\left( 1 \right)} \times \left[ \frac{v\left( 1 \right) \times u'\left( 1 \right) - u\left( 1 \right) \times v'\left( 1 \right)}{\left\{ v\left( 1 \right) \right\}^2} \right]\]
\[ \Rightarrow f'\left( 1 \right) = 1 \times \left[ \frac{u\left( 1 \right) \times 2 - u\left( 1 \right) \times 2}{\left\{ u\left( 1 \right) \right\}^2} \right] .........\left[ \text{ Using eqn } \left( \text{i} \right) \right]\]
\[ \Rightarrow f'\left( 1 \right) = \left[ \frac{0}{\left\{ u\left( 1 \right) \right\}^2} \right] \]
\[ \Rightarrow f'\left( 1 \right) = 0\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e3x.
Differentiate tan (x° + 45°) ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If y = etan x, then (cos2 x)y2 =
Find the minimum value of (ax + by), where xy = c2.
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.