हिंदी

If Y = Sin (Log X), Prove that X 2 D 2 Y D X 2 + X D Y D X + Y = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?

उत्तर

Here,

\[y = \sin\left( \log x \right)\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d y}{d x} = \frac{\cos\left( \log x \right)}{x}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{- \sin\left( \log x \right) - \cos\left( \log x \right)}{x^2}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{- \sin\left( \log x \right)}{x^2} - \frac{\cos\left( \log x \right)}{x^2}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{- y}{x^2} - \frac{1}{x} \times \frac{dy}{dx}\]

\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 39 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate sin (3x + 5) ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate x2 with respect to x3


If f (x) = loge (loge x), then write the value of `f' (e)` ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function  log (sin x) ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×