Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
उत्तर
\[\text{ We have, x } = a\left( \cos\theta + \theta \sin\theta \right) \text{ and }y = a\left( \sin\theta - \theta \cos\theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left[ \frac{d}{d\theta}\cos\theta + \frac{d}{d\theta}\left( \theta \sin\theta \right) \right] \text{ and } \frac{dy}{d\theta} = a\left[ \frac{d}{d\theta}\left( \sin\theta \right) - \frac{d}{d\theta}\left( \theta \cos\theta \right) \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left[ - \sin\theta + \theta\frac{d}{d\theta}\left( \sin\theta \right) + \sin\theta\frac{d}{d\theta}\left( \theta \right) \right] \text{ and} \frac{dy}{d\theta} = a\left[ \cos\theta - \left\{ \theta\frac{d}{d\theta}\left( \cos\theta \right) + \cos\theta\frac{d}{d\theta}\left( \theta \right) \right\} \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left[ - \sin\theta + \theta \cos\theta \right] \text{ and } \frac{dy}{d\theta} = a\left[ \cos\theta + \theta \sin\theta - \cos\theta \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = a\theta \cos\theta \text{ and} \frac{dy}{d\theta} = a\theta \sin\theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\theta \sin\theta}{a\theta \cos\theta} = \tan\theta\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
Find the minimum value of (ax + by), where xy = c2.