हिंदी

Find D Y D X Y = ( Tan X ) Cot X + ( Cot X ) Tan X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?

योग

उत्तर

\[\text{ We have }, y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x} \]

\[ \Rightarrow y = e^{\log \left( \tan x \right)^{\cot x }}+ e^{\log \left( \cot x \right)^{\tan x}} \]

\[ \Rightarrow y = e^{\cot\ x\ log\ tan\ x}+e^{\tan x \log\left( \cot x \right)} \]

Differentiating with respect to using chain rule and product rule,

 

\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cot x \log\tan x} \right) + \frac{d}{dx}\left( e^{\tan x logcotx} \right)\]

\[ = e^{\cot x \log\tan x} \frac{d}{dx}\left( {}^{\cot x \log\tan x} \right) + e^{\tan\ x\ logcot x} \frac{d}{dx}\left( {}^{\tan\ x\ logcot\ x} \right)\]

\[ = e^{\log \left( \tan x \right)^{\cot x}}\left[ \cot x\frac{d}{dx}\left( \log \tan x \right) + \log \tan x\frac{d}{dx}\left( \cot x \right) \right] + e^{\log\left( \cot x \right)\tan x} \left[ \tan x\frac{d}{dx}\left( \log \cot x \right) + logcot x\frac{d}{dx}\left( \tan x \right) \right] \]

\[ = \left( \tan x \right)^{\cot x} \left[ \cot x \times \left( \frac{1}{\tan x} \right)\frac{d}{dx}\left( \tan x \right) + \log \tan x\left( - {cosec}^2 x \right) \right] + \left( \cot x \right)^{\tan x} \left[ \tan x \times \left( \frac{1}{\cot x} \right)\frac{d}{dx}\left( \cot x \right) + \log \cot x\left( \sec^2 x \right) \right]\]

\[ = \left( \tan x \right)^{\cot x} \left[ \left( \frac{{cosec}^2 x}{\sec^2 x} \right)\left( \sec^2 x \right) - {cosec}^2 x \log \tan x \right] + \left( \cot x \right)^{\tan x} \left[ \left( \frac{\sec^2 x}{{cosec}^2 x} \right)\left( - {cosec}^2 x \right) + \sec^2 x \log \cot x \right]\]

\[ = \left( \tan x \right)^{\cot x} \left[ {cosec}^2 x - {cosec}^2 x \log \tan x \right] + \left( cot x \right)^{\tan x} \left[ \sec^2 x \log \cot x - \sec^2 x \right]\]

\[ = \left( \tan x \right)^{\cot x} {cosec}^2 x\left[ 1 - \log \tan x \right] + \left( cot x \right)^{\tan x} \sec^2 x \left[ \log \cot x - 1 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 27 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles x2ex ?


Differentiate (log sin x)?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function  log (log x)  ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×