Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
उत्तर
\[\text{Let, y } = \tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}\]
\[\text{ Put x } = a \sin\theta\]
\[ y = \tan^{- 1} \left\{ \frac{a \sin\theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right\}\]
\[ y = \tan^{- 1} \left( \frac{a \sin\theta}{\sqrt{a^2 \left( 1 - \sin^2 \theta \right)}} \right) \]
\[ y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a \cos\theta} \right\} \]
\[ y = \tan^{- 1} \left( \tan\theta \right) ...........\left( 1 \right)\]
\[Here, - a < x < a\]
\[ \Rightarrow - 1 < \frac{x}{a} < 1\]
\[ \Rightarrow \sin\left( - \frac{\pi}{2} \right) < \sin\theta < \sin\left( \frac{\pi}{2} \right) \left( \because x = a \sin\theta \right)\]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( 1 \right), \]
\[ y = \theta \left[ \text{ Since}, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ y = \sin^{- 1} \left( \frac{x}{a} \right) \left[ \text{ Since, x } = a \sin\theta \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[\text{ Using chain rule }, \]
\[\frac{d y}{d x} = \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}}\frac{d}{dx}\left( \frac{x}{a} \right)\]
\[\frac{d y}{d x} = \frac{a}{\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]
\[\frac{d y}{d x} = \frac{1}{\sqrt{a^2 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate tan2 x ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function tan−1 x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
f(x) = 3x2 + 6x + 8, x ∈ R