Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
उत्तर
\[\text{ Let y} = \left( \sin x \right)^{\cos x }. . . \left( i \right)\]
Taking log on both sides
\[\log y = \log \left( \sin x \right)^{\cos x }\]
\[ \Rightarrow \log y = \cos x \log \sin x \]
\[\text{ Differentiating with respect to x }, \]
\[\frac{1}{y}\frac{dy}{dx} = \cos x\frac{d}{dx}\left( \log \sin x \right) + \log \sin x\frac{d}{dx}\left( \cos x \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \cos x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) + \log \sin x\left( - \sin x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{\cos x}{\sin x}\left( \cos x \right) - \sin x \log \sin x\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \cos x \cot x - \sin x \log \sin x \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin x \right)^{\cos x} \left[ \cos x \cot x - \sin x \log \sin x \right] \left[ \text{using equation }\left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]